

Rap Misago

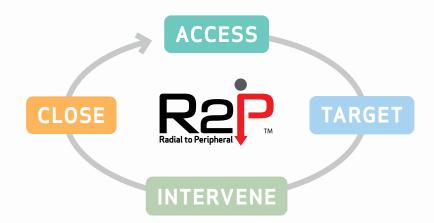
Confidently intervene from a radial approach

Available on a 200 cm shaft length

88.6

82.9

PROVEN PERFORMANCE IN TREATING PAD PATIENTS WORLDWIDE¹⁻³


After one year in the OSPREY clinical trial[®]:

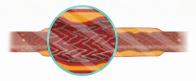
Freedom from target lesion revascularization Measured using Kaplan-Meier analysis¹

Sustained patency

Measured using Kaplan-Meier analysis (PSVR of ≤2.4)¹

99 1% Freedom from stent fracture per stent post-procedure¹

R2P[™] is the first and only portfolio of longer-length radial devices specifically designed for peripheral procedures, including above-the-knee PAD/CLI vascular interventions.


^aThese results are based on clinical data using femoral artery access and are not based on data specifically related to transradial access.

TERUMO IS IN EVERY DETAIL

Increased flexibility lowers the potential for stent fracture⁴

The continuous spine-free stent is designed to promote optimal blood flow and eliminate high-strain stress zones that can lead to fracture.⁴

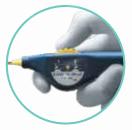
Combined high crush resistance⁴ and moderate radial force⁵ helps to maintain vessel patency along the full length of the lesion.

Responsive in-vitro performance in severe bend situations⁴

No stent fractures recorded during:

90% Torsion Test

Simulated rotation between supine and fetal position


40% Compression Test

Simulated response during thigh compression

More flexible stents may be associated with improved patency.⁶

Precise deployment at the lesion site¹

- **Minimizes jumping, recoil or foreshortening** with a simplified thumbwheel system that allows for single operator deployment
- Enables exact stent placement with the pushability of a triaxial catheter design

PUSHING Boundaries

Terumo Interventional Systems is **committed to your success** with innovative procedural solutions and ongoing support for your most challenging cases.

We are relentlessly seeking new ways to help you apply effective solutions and achieve **better outcomes for more patients.**

FIND OUT MORE Dehone: 800.888.3786 terumois.com

Indications

The R2P™ MISAG0® RX Self-expanding Peripheral Stent is indicated to improve luminal diameter in symptomatic patients with *de novo* or restenotic native lesions or occlusions of the Superficial Femoral Artery (SFA) and/or proximal popliteal artery with reference vessel diameters ranging from 4 mm to 7 mm and lesion length up to 150 mm.

Important Safety Information

Do not use this device in patients who exhibit angiographic evidence of severe thrombus in the target vessel or lesion site before/after undergoing Percutaneous Transluminal Angioplasty (PTA) procedure, patients with contraindication to antiplatelet and/or anticoagulation therapy, patients who are judged to have a lesion that prevents proper placement or deployment of the stent, a lesion that is within an aneurysm or an aneurysm with a proximal or distal segment to the lesion, or a lesion through which a guidewire cannot pass. This device should only be used by a physician who is familiar with, and well trained in, Percutaneous Transluminal Angioplasty (PTA) techniques, stent implantation, and transradial access.

RX ONLY. Refer to the product labels and package insert for complete warnings, precautions, potential complications, and instructions for use.

References:

MISAGO® RX Self-expanding Peripheral Stent [Instructions for Use.] Tokyo, Japan: Terumo Corporation; 2020-02.
Schulte KL, Müller-Hülsbeck S, Cao P, et al. MISAGO 1: first-in-man clinical trial with MISAGO nition is tent. *EuroIntervention*. 2010;5:687-691.
Schulte KL, Kralj I, Gissler HM, et al. MISAGO 2: one-year outcomes after implantation of the MISAGO 2: first-in-man clinical trial with MISAGO 2: first-in-man clinical trial with MISAGO 2: one-year outcomes after implantation of the MISAGO 2: first-in-man clinical trial with MISAGO 2: one-year outcomes after implantation of the MISAGO 2: one-year outcomes after implantation of the MISAGO 2: first-in-man clinical trial with MISAGO 2: one-year outcomes after implantation of the second-generation stents for application in the sperificial femoral artery: an *in-vitro* evaluation focusing on stent design. *J Endovasc Ther.* 2010;17(6):767-776.
Deloose K, Bosiers M, Callaert J, TVR reduction in the SFA. *Endovascular Today.* October 2014;44-47. https://evtoday.
Com/2014/10/tvr-reduction-in-the-sfa. Accessed March 6, 2019.
G. Smouse R. Achieving

long-term SFA treatment success: stent design or patient selection. International Symposium on Endovascular Therapy (ISET) 2014, January 18-22, 2014; Miami Beach, FL.

©2023 Terumo Medical Corporation. All rights reserved. All brand names are trademarks or registered trademarks of their respective owners. PM-07340